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For distributed training over high-latency networks, use gossip-based 
approximate averaging instead of exact averaging like AllReduce

‣ Parallel version of SGD that is usually adopted for large-scale 
distributed training calculates an exact inter-node gradient average 
using the AllReduce communication primitive. 

‣ Exact averaging is not robust in high-latency or high-variability 
platforms, e.g., where network bandwidth may be a significant 
bottleneck. 

‣ PushSum, which has been proposed in the control systems literature, is 
a consensus-based approach to aggregate information. PushSum uses 
less coupled message passing algorithms, and computes inexact 
distributed averages. 

‣We study Stochastic Gradient Push (SGP), an algorithm blending SGD 
and PushSum, for distributed training of deep neural networks.
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Approximate distributed averaging using the PushSum algorithm

PushSum Distributed Averaging

‣Our goal is to compute                  ,  where                  is a variable at the ith 

node 

‣ Algorithm is iterative. Each node                          , is initialized with the 

variable to be averaged,                 , and a scalar push-sum weight              

‣Algorithm: At each time, t, each node,                           ,  
   
1) sends pre-weighted estimate of average,           ,  to neighboring 
nodes                 , and pre-weighted push-sum weight,             , such that, 
 
 
 
2) sums all pre-weighted messages received from neighbours 
 

‣Algorithm in Matrix Form: Initialize 
Iteratively Compute: 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Distributed optimization using the Stochastic Gradient Push algorithm

Blending SGD and PushSum

communication

Biased average estimate

De-biased average estimate

Convergence Rate for Smooth Nonconvex Loss function

Analysis

Empirical Evaluation
ImageNet, ResNet50

Nodes 4 (32GPUs) 8 (64GPUs) 16 (128GPUs) 32 (256GPUs)

All-Reduce SGD
acc.(%) 76.23 76.41 76.37 76.21
sec./itr 0.704 0.896 1.086 1.308

D-PSGD
acc.(%) 76.42 76.14 75.69 74.35
sec./itr 0.628 0.618 0.632 0.657

Asynch. D-PSGD
acc.(%) 76.07 75.96 75.51 74.98
sec./itr 0.361 0.363 0.374 0.388

SGP
acc.(%) 76.33 76.40 75.73 75.00
sec./itr 0.377 0.377 0.411 0.426

High Latency Networks (10Gbps Ethernet)

‣ In a high-latency scenario, SGP runs up to 3× faster than 
AllReduce SGD 

‣The top-1 validation accuracy of SGP matches that of AllReduce 
SGD for up to 8 nodes (64 GPUs), and remains within 1.2% of 
AllReduce SGD for larger networks. 

‣SGP outperforms previous state-of-art in decentralized 
consensus-based approach.
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Directed Exponential 
Graph

‣ Run the PushSum algorithm over 
directed and potentially time-varying 
communication topologies 

‣We use a Directed Exponential Graph 
topology for our experiments


