
STOCHASTIC GRADIENT PUSH FOR
DISTRIBUTED DEEP LEARNING

Mido Assran
Nicolas Loizou
Nicolas Ballas

Mike Rabbat

For distributed training over high-latency networks, use gossip-based
approximate averaging instead of exact averaging like AllReduce

‣ Parallel version of SGD that is usually adopted for large-scale
distributed training calculates an exact inter-node gradient average
using the AllReduce communication primitive.

‣ Exact averaging is not robust in high-latency or high-variability
platforms, e.g., where network bandwidth may be a significant
bottleneck.

‣ PushSum, which has been proposed in the control systems literature, is
a consensus-based approach to aggregate information. PushSum uses
less coupled message passing algorithms, and computes inexact
distributed averages.

‣We study Stochastic Gradient Push (SGP), an algorithm blending SGD
and PushSum, for distributed training of deep neural networks.

Introduction

NeurIPS'18 SysML Workshop

Approximate distributed averaging using the PushSum algorithm

PushSum Distributed Averaging

‣Our goal is to compute , where is a variable at the ith

node

‣ Algorithm is iterative. Each node , is initialized with the

variable to be averaged, , and a scalar push-sum weight

‣Algorithm: At each time, t, each node, ,  
  
1) sends pre-weighted estimate of average, , to neighboring
nodes , and pre-weighted push-sum weight, , such that, 
 
 
 
2) sums all pre-weighted messages received from neighbours 
 

‣Algorithm in Matrix Form: Initialize 
Iteratively Compute: 
 
 
 

1

n

n

∑
i=1

y(0)
i

y(0)
i ! " d

p(t)
j,i y(t)

i

∑
j! # (t)

out

p(t)
j,i = 1, (i = 1,2,É ,n) .

i ! { 1,2,É ,n}

j ! # (t)
out

y(0)
i ! " d

w(0)
i = 1

i ! { 1,2,É ,n}

p(t)
j,i w(0)

i

y(t+1) = ∑
j! # (t

in

p(t)
j,i y(t)

j , w(t+1) = ∑
j! # (t

in

p(t)
j,i w(t)

j

Y(0) = [y(0)
i]n

i=1, w(0) = [w(0)
i]n

i=1

Y(t+1) = P(t)Y(t), w(t+1) = P(t)w(t)

lim
K$ %

&K
t=0P

(t) = ! 1T '
y(%)
i = ! i

n

∑
j=1

y(0)
j

w(%)
i = ! in

'
y(%)

i

w(%)
i

=
1

n

n

∑
j=1

y(0)
j

Distributed optimization using the Stochastic Gradient Push algorithm

Blending SGD and PushSum

communication

Biased average estimate

De-biased average estimate

Convergence Rate for Smooth Nonconvex Loss function

Analysis

Empirical Evaluation
ImageNet, ResNet50

Nodes 4 (32GPUs) 8 (64GPUs) 16 (128GPUs) 32 (256GPUs)

All-Reduce SGD
acc.(%) 76.23 76.41 76.37 76.21
sec./itr 0.704 0.896 1.086 1.308

D-PSGD
acc.(%) 76.42 76.14 75.69 74.35
sec./itr 0.628 0.618 0.632 0.657

Asynch. D-PSGD
acc.(%) 76.07 75.96 75.51 74.98
sec./itr 0.361 0.363 0.374 0.388

SGP
acc.(%) 76.33 76.40 75.73 75.00
sec./itr 0.377 0.377 0.411 0.426

High Latency Networks (10Gbps Ethernet)

‣ In a high-latency scenario, SGP runs up to 3× faster than
AllReduce SGD

‣The top-1 validation accuracy of SGP matches that of AllReduce
SGD for up to 8 nodes (64 GPUs), and remains within 1.2% of
AllReduce SGD for larger networks.

‣SGP outperforms previous state-of-art in decentralized
consensus-based approach.

n nodes cooperate to solve min.xi! " d,i=1,É ,n
1

n

n

∑
i=1

("i) Di
Fi(xi; "i)

subject to xi = xj, (i, j = 1,É ,n)

fi(xi) = ("i) Di
Fi(xi; "i) f(x) =

1

n

n

∑
i=1

fi(xi)

fi(*) (") Di
+ Fi(xi; ") , + fi(xi) - #2

1

n

n

∑
i=1

+ fi(xi) , + f(x)
2

- $2

Define , and

Assume that is L-smooth, and

1

nK

K, 1

∑
k=0

n

∑
i=1

(+ fi(z
(k)
i)

2
- . (1

nK)Main Convergence
Result:

1

2

3

0

4

6

5

7

Directed Exponential
Graph

‣ Run the PushSum algorithm over
directed and potentially time-varying
communication topologies

‣We use a Directed Exponential Graph
topology for our experiments

