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Introduction

For distributed training over high-latency networks, use gossip-based
approximate averaging instead of exact averaging like AlIReduce

Blending SGD and PushSum

Distributed optimization using the Stochastic Gradient Push algorithm
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» Parallel version of SGD that is usually adopted for large-scale
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distributed training calculates an exact inter-node gradient average 2: ~ D; from local distribution

using the AllIReduce communication primitive. 3 Compute a local stochastic mini-batch gradient at z, " : VF} (2. ). fz(k))
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» Exact averaging is not robust in h|gh-|&}tency or h|gh-\./ar|.a.blllty 5. Send (p§ ) 5 3) p§_ M)t )) to out-neighbors j € Aou(~).
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» PushSum, which has been proposed in the control systems literature, is 7wt =y ) D! k) (A)

a consensus-based approach to aggregate information. PushSum uses L41) _ it (Hf) De-biased average estimate
less coupled message passing algorithms, and computes inexact g' ond for =z,
distributed averages.

» We study Stochastic Gradient Push (SGP), an algorithm blending SGD o

and PushSum, for distributed training of deep neural networks. AnalySIS

Convergence Rate for Smooth Nonconvex Loss function
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PushSum Distributed Averaging

Approximate distributed averaging using the PushSum algorithm
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» Algorithm is iterative. Each node I ! {1,2E ,n}, is initialized with the

variable to be averaged, y | " 9, and a scalar push-sum weight w(® = 1

Main Convergence

» Algorithm: At each time, t, each node, 1! {1,2E ,n},
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» Algorithm in Matrix Form: Initialize Y(© =

[y(o)].: | w0 = [V\,i(O)]in:1 20
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Iteratively Compute:

YD) = pOy® High Latency Networks (10Gbps Ethernet)

W(t+ 1) = P(t)W(t)

Nodes 4 (32GPUs) 8 (64GPUs) 16 (128GPUs) 32 (256GPUs)
acc.(%) 76.23 76.41 76.37 76.21
- All-Reduce SGD it 0.704 0.896 1.086 1.308
Y0) — 0 sec./itr : : : :
K p) = 11T yi( ) = !izyj() , yi(%) 1% (0) acc.(%) 76.42 76.14 75.69 74.35
lIm &t OP 1 =1 — _Zy D-PSGD .
K$ % %) — | Wi(%) n - - J sec./itr 0.628 0.618 0.632 0.657
WETT =2l a acc.(%) 76.07 75.96 75.57 74.98
Asynch. D-PSGD ,
sec./itr 0.361 0.363 0.374 0.388
SGp acc.(%) 76.33 76.40 75.73 75.00
sec./itr 0.377 0.377 0.411 0.426

» Run the PushSum algorithm over
directed and potentially time-varying
communication topologies

» In a high-latency scenario, SGP runs up to 3x faster than

AllIReduce SGD

» The top-1 validation accuracy of SGP matches that of AllReduce
SGD for up to 8 nodes (64 GPUs), and remains within 1.2% of
AlIReduce SGD for larger networks.

» We use a Directed Exponential Graph
topology for our experiments

Directed Exponential
Graph

» SGP outperforms previous state-of-art in decentralized
consensus-based approach.




